Термометры устройство принцип работы

Важные информационные данные на тему: "Термометры устройство принцип работы" с описанием сопутствующих проблем и способов их решения. За индивидуальными консультациями всегда можно обратиться к дежурному специалисту.

Манометрические термометры

Манометрический термометр (рис. 1) состоит из термобаллона 8, трубчатой (или винтовой) пружины 1 и соединяющего их капилляра 7, заполненных газом, жидкостью или паром. При изменении температуры пространства, в котором находится термобаллон, меняется давление в системе, и, следовательно, в пружине. Последняя имеет овальное или эллиптическое сечение (пружина Бурдона), и поэтому при изменении давления в ней она раскручивается или скручивается, а так как один из ее концов жестко закреплен в держателе 6, это вызывает перемещение другого ее конца, перемещение через поводок 2, сектор 3 и трубку 5 передается указывающей стрелке 4.

Манометрические термометры позволяют измерять температуры от —130 до +550°С.

Рис. 1. Манометрический термометр с трубчатой пружиной Бурдона.

К преимуществам манометрических термометров следует отнести возможность передачи показаний на сравнительно большие расстояния, так как капилляр может изготавливаться длиной до 30—60 м, и большую мощность измерительной системы, к которой могут быть пристроены пишущие и контактные устройства. Благодаря этому эти приборы могут изготовляться как указывающие, регистрирующие, сигнализирующие и регулирующие.

К недостаткам манометрических термометров следует отнести большой размер и тепловую инерцию датчика (термобаллона), постепенную деформацию в эксплуатации термобаллона и капилляра, сбивающую градуировку, вследствие чего требуется периодическая их проверка, и относительную трудность ремонта.

Наиболее распространенные у нас газовые манометрические термометры типа ТГ наполнены азотом и имеют пределы измерения от 0 до 300 °С.

Рис. 2. Манометрический термометр

Газовые термометры заполняются азотом под давлением, поэтому влияние атмосферного давления на показания прибора сведено к минимуму и с ним можно не считаться. Естественно, температура окружающей среды влияет на их показания, однако при правильном выборе отношения объемов баллона и капиллярной трубки они могут достаточно точно работать при длине капилляра до 30 — 40 м. Этот же недостаток— влияние температуры окружающей среды — имеют и жидкостные термометры, для них в качестве рабочей жидкости могут применяться метиловый спирт, ксилол или ртуть.

Паровые манометрические термометры имеют термобаллон, заполненный на 2/3 объема низкокипящей жидкостью, например бензолом, ацетоном, хлор-метилом. Остальная треть баллона занята паром этих жидкостей. Капилляр и пружина заполнены жидкостью, которая при рабочих температурах не испаряется (например, смесь глицерина, воды и спирта).

Так как упругость насыщенного пара очень быстро возрастает с температурой, то влияние расширения жидкости в капилляре и пружине ничтожно, поэтому можно изготавливать приборы с относительно меньшим термобаллоном. Недостатком паровых манометрических термометров является недостаточный верхний предел измеряемых температур 100 — 200 °С.

Удобнее всего применять манометрические термометры для измерения и регулирования температуры жидкостей, например для указания и сигнализации температуры масла в трансформаторах, в том числе и печных. В электрических печах термобаллоны практически не применяются из-за больших тепловой инерции и размеров термобаллона.

Источник: http://electricalschool.info/main/drugoe/971-manometricheskie-termometry.html

Биметаллический термометр

Биметаллический термометр — это прибор для измерения температуры, принцип работы которого основан на расширении и сжатии твердых тел.

Прочность биметаллических термометров делает их приемлемыми для промышленного применения. Более того, биметаллические термометры способны противостоять температурам за пределами диапазона измерений.

Выход за пределы диапазона измерений означает, что термометр подвергается воздействию температур, которые либо выше, либо ниже самых высоких или самых низких показаний температуры на шкале термометра.

Схема биметаллического термометра

Что касается недостатков, то металлы, из которых изготавливаются биметаллические элементы термометров подвержены одному существенному дефекту, который отсутствует в жидкостных системах или манометрических системах. Так металлы могут закаливаться при воздействии температур свыше 1000°C в течение длительного времени. Закаливание биметаллических элементов понижает их чувствительность к изменениям температуры. Когда это происходит, то элемент не будет расширяться и как обычно при нагревании и сжиматься как обычно при охлаждении. Поэтому при повышении температуры стрелка не будет двигаться пропорционально повышению температуры. Когда температура будет понижаться, то стрелка не будет перемещаться пропорционально понижению температуры. Биметаллический элемент с закаленным элементом может слабо реагировать на повышение температуры и сильно реагировать на понижение температуры.

Принцип работы биметаллического термометра

У биметаллического термометра есть стрелка и шкала, с которой ведется отсчет показаний. Трубка биметаллического термометра служит в качестве контейнера, куда помещается для стержня и биметаллического элемента.

Биметаллический стержень (стержень, изготовленный из двух различных металлов, скрепленных вместе) может использоваться в качестве компенсатора в манометрических системах. Биметаллический элемент биметаллического термометра сходен с биметаллическим стержнем. Он также изготовлен из двух различных металлов, которые сжимаются или расширяются с различной степенью при изменениях температуры. Металл верхней части при нагревании расширяется больше, чем нижний, поэтому стержень изгибается в направлении, показанном на рисунке ниже. Металл наверху также сильнее сжимается при охлаждении и заставляет стержень изгибаться в противоположном направлении.

Биметаллический элемент реагирует на изменения температуры

Виды биметаллических термометров

Спиральный

Часто биметаллические элементы биметаллических термометров имеют форму спирали. Большинство элементов биметаллических термометров должны раскручиваться при нагревании. Однако это вовсе не обязательно. Некоторые, наоборот закручиваются при нагревании. Независимо от конструкции, направление движения элемента термометра будет известно и стрелка покажет изменения температуры.

Спиральный элемент реагирует на изменения температуры

Элемент, показанный на рисунке выше должен раскручиваться при нагревании. Когда этот спиральный элемент нагревается, то в ответ на повышение температуры он старается распрямиться. Подобное движение спирального элемента двигает стрелку в сторону более высоких показаний по шкале. Когда температура понижается, то спираль закручивается и стрелка двигается в сторону более низких показаний. Скручивание и распрямление спирального элемента пропорционально изменениям температуры Спиральные элементы используются в биметаллических термометрах вместо элементов в виде стержня, так как спиральный элемент занимает меньше места, чем элемент прямой формы. Кроме того, спиральный элемент обеспечивает больший ход стрелки, что в свою очередь, означает большую чувствительность к изменениям температуры.

Геликоид

Иногда спиральные элементы оказываются слишком плоскими и широкими, чтобы их можно применять в промышленности. Например, измерение температуры технологической жидкости, проходящей по большой трубе достаточно затруднено, так как потребуется датчик достаточно большой длины, чтобы он соприкасался с жидкостью. Для таких измерений температуры биметаллические термометры должны иметь удлиненный или длинный спиральный элемент. Удлиненный спиральный элемент носит название пространственной спирали или геликоида. Когда пространственная спираль нагревается, то она в результате раскручивается. Подобное раскручивание двигает ось, которая в свою очередь, передвигает стрелку по шкале в сторону более высоких показаний. При охлаждении пространственная спираль скручивается и двигает стрелку в сторону более низких показаний.

Читайте так же:  Кто должен оплачивать обслуживание зарплатной карты

Геликоид реагирует на изменения температуры

С многоступенчатой спиралью

Некоторые биметаллические термометры используют многоступенчатые спирали. Многоступенчатые пространственные спирали состоят из двух или более концентрических витков (витков внутри других витков), но тем не менее, это один биметаллический элемент. Многоступенчатая пространственная спираль работает по такому же принципу, как и унифилярная спираль. Она раскручивается при увеличении температуры и скручивается при понижении температуры. Многоступенчатая пространственная спираль занимает меньше места чем унифилярная спираль, но она способна обеспечить больший ход стрелки, чем унифилярная спираль аналогичного размера. По этой причине многоступенчатые пространственные спирали используются вместо унифилярных спиралей для измерений температуры внутри очень узких труб, или там, где нет места для погружения биметаллического термометра с более длинной унифилярной спиралью.

Источник: http://www.kipiavp.ru/pribori/bimetallicheskiy-termometr.html

Термометр сопротивления RTD

Термометры сопротивления — электрический температурный датчик, использующий изменения сопротивления, которое противодействует протеканию тока, который является основой для измерений температуры. В английском языке термометр сопротивления обозначается тремя буквами RTD.

Стандартный термометр сопротивления

Основным электрическим компонентом термометра сопротивления является резистор, который часто представляет собой провод, обмотанный вокруг керамического изолятора в виде стержня Резистор и является температурным чувствительным элементом термометра сопротивления. Для защиты чувствительного элемента от физического воздействия и изоляции электрической цепи от технологической жидкости во избежание короткого замыкания резистор обычно заключается в корпус из нержавеющей стали. Два провода подсоединяются к электрической цепи внутри корпуса посредством герметичного уплотнения.

Схема термометра сопротивления

Принцип действия термометра сопротивления

Термометры сопротивления могут использоваться для измерения температуры электрическим путем, так как существует прямо пропорциональная зависимость между изменениями сопротивления и изменением температуры.

Другими словами, при повышении температуры величина сопротивления возрастает прямо пропорционально, а при понижении температуры сопротивление пропорционально уменьшается. Подобный принцип используется в термометрах сопротивления, так как сопротивление термометра уменьшается или увеличивается пропорционально температуре процесса, который он измеряет. Любое изменение сопротивления может быть зарегистрировано и преобразовано в температурные показания с помощью таблицы, или отображено на шкале, которая откалибрована в единицах измерения температуры.

Как и термопара или любой другой температурный датчик термометр сопротивления (RTD) функционален при измерении температуре только, если он подсоединен к электрической цепи. Обычно с термометрами сопротивления применяются мостовые схемы, так как такие схемы позволяют добиться высокой точности. Вместе с мостовой схемой используется батарея, которая служит в качестве источника питания. Цепи термометров сопротивления должны иметь внешний источник питания, так как они не способны генерировать напряжение сами.

Мостовая схема термометра сопротивления с батареей

Мостовая схема, изображенная на рисунке выше состоит из пяти резисторов: Р1, R2, R3, R4, R5; и точек соединения: А, В, С, D.

В данном случае давайте предположим, что каждый резистор в мостовой схеме обладает одинаковым сопротивлением. Так как ток протекает от минуса к плюсу в данном контуре, то протекание начинается с минусовой клеммы батареи и ток достигает точки А. В точке А ток расщепляется на равные части: одна половина протекает через сопротивление R1 в точку В, а другая половина протекает через R2 к точке С. Так как сопротивление всех резисторов одинаковое, то между точками В и С нет разницы в величине напряжения, поэтому ток через R5 не протекает.

Когда ток через средний резистор не протекает, то мост, как говорится «уравновешен». В данном примере ток протекает от точки В, через R3 в точку D. Ток также протекает от точки С через R4 в точку D. Ток от точки D возвращается на положительную клемму батареи, завершая цепь.

Протекание тока через уравновешенный мост

Мостовая схема, изображенная на рисунке выше похожа на предыдущую схему за исключением того, что резистор R3 заменен термометром сопротивления. В данной конфигурации ток по-прежнему протекает от минусовой клеммы батареи на точки В и С. Однако, если сопротивление термометра сопротивления (RTD) отличается по величине от сопротивления резистора R4, то между точками В и С появится напряжение. Это означает, что мост неуравновешен и ток будет протекать через резистор R5.

Мостовая схема с термометром сопротивления

Ток, протекающий через мост, может быть измерен, если мы заменим R5 измерительным прибором, который и будет определять температуру, измеряя ток. Так схема обеспечивает высокую точность, то она часто используется вместе с термометрами сопротивления для измерения температуры.

Мостовая схема с термометром сопротивления и измерительным прибором

Когда для измерения температуры используются термометры сопротивления, то они включаются в схему, подобно той, что показана на рисунке выше. Во многих случаях термометры сопротивления расположены на удалении от остальных элементов цепи, так как они подвержены воздействию температуры технологического процесса. По мере того, как температура вокруг термометра меняется, то пропорционально меняется величина сопротивления термометра. Когда сопротивление термометра меняется, то мост становится неуравновешенным и определенный ток протекает через измерительный прибор. Этот ток пропорционален изменениям температуры. Температура процесса затем может быть определена по показаниям шкалы прибора. В некоторых случаях шкалы откалиброваны на показания величины сопротивления, а не температуры. В таких случаях надо воспользоваться переводной таблицей для перевода ом в градусы.

Источник: http://www.kipiavp.ru/pribori/termometr-soprotivleniya.html

Pereosnastka.ru

Обработка дерева и металла

Технические электроконтактные термометры применяют для сигнализации и регулирования температуры в интервале от -30 до +300 °С. Эти термометры изготовляют с заданной температурой контактирования ( ТЗК ) или с подвижным контактом ( ТПК ). Они могут иметь вложенную шкалу и прямую или угловую форму. Технические электроконтактные термометры могут работать в цепях переменного и постоянного тока. Определение действительного значения температуры контактирования и контроль за правильностью сигнализации и регулирования температуры осуществляют по контрольному термометру.

Замыкание (размыкание) электрической цепи между контактами в контактных термометрах происходит вследствие расширения (сжатия) ртути при нагревании (охлаждении) нижней части термометра.

Читайте так же:  Как высчитываются алименты на 2 детей

При применении электроконтактного термометра нижняя часть его должна полностью погружаться в измеряемую среду. Допускаемая погрешность показаний термометра не должна превышать цены наименьшего деления.

Термометры типа ТЗК выпускают с постоянными впаянными в капилляр металлическими контактами, к которым припаяны медные провода, присоединенные к зажимам. Термометры могут иметь одну, две или три точки контактирования. Контакты впаивают в капилляр термометра в местах, соответствующих определенным значениям температуры контактирования. Минимальные интервалы между двумя соседними контактами обычно составляют не менее 5, 10, 20 и 30 °С для температуры контактирования соответственно до 50, 100, 200 и 300 °С.

Термометр типа ТПК показан на рис. 2. Он имеет один неподвижный контакт, соединенный с термометрической жидкостью и один подвижный контакт, выполненный из тонкой вольфрамовой проволоки, верхний конец которой соединен с гайкой. Нижний конец вольфрамовой проволоки, находящейся в измерительном капилляре, является подвижным контактом термометра. Вверху термометра расположена вспомогательная шкала, указателем которой при настройке термометра является гайка. Последняя может перемещаться по винту 5 вверх и вниз. Вращение винта, а следовательно, и перемещение гайки, осуществляют с помощью подковообразного магнита с ручкой. Внизу термометра расположена основная шкала, При перемещении гайки по винту на определенную отметку верхней шкалы нижний конец подвижного контакта установится против соответствующей отметки основной шкалы. Неподвижный контакт и подвижный контакт соединены с зажимами. При нагревании (охлаждении) нижней части термеметра до заданной температуры ртуть в капилляре соединит (разомкнет) неподвижный контакт с подвижным, в результате чего происходит переключение внешней электрической цепи, соединенной с зажимами.

Рис. 1. Термометры типа ТЗК :
1 – капилляр; 2 – металлические контакты; 3 – зажимы

Рис. 2. Термометры типа ТПК :
1 – зажимы для подключения; 2 – ручка для вращения магнита; 3 – подковообразный магнит; 4 – вспомогательная шкала; 5 – подвижный винт; 6 – основная шкала; 7 – капилляр; 8 – баллон с ртутью; 9 – гайка; 10 – подвижный контакт; 11 – неподвижный контакт

Источник: http://pereosnastka.ru/articles/tekhnicheskie-elektrokontaktnye-termometry

Pereosnastka.ru

Обработка дерева и металла

Манометрические термометры предназначаются для измерения температуры жидких и газообразных сред в стационарных условиях в интервале от-150 до 600 °С.

Принцип действия манометрических термометров основан на изменении давления заполнителя термосистемы от температуры измеряемой среды, В зависимости от применяемого заполнителя термосистемы манометрические термометры делятся на газовые, жидкостные и конденсационные. Замкнутая система манометрического термометра, показанная на рис. 1, состоит из термобаллона, соединительного капилляра и манометрической пружины.

Изменение температуры контролируемой среды воспринимается заполнителем термосистемы через термобаллон и преобразуется в изменение давления, под действием которого манометрическая трубчатая пружина с помощью тяги, сектора и трибки перемещает стрелку относительно шкалы. Это перемещение через соответствующие устройства передается на сигнальное устройство; у термометров с пневматическим выходным сигналом — на пневматический преобразователь; у термометров с электрическим выходным сигналом — на механоэлектрический преобразователь.

В термометрах с сигнальным устройством изменение измеряемой температуры воспринимается термобаллоном и передается на манометрическую пружину, которая несколько распрямляясь, через сектор и трибку приводит в движение стрелку относительно шкалы. Вместе с показывающей стрелкой перемещается ведущий поводок с двумя подвижными поводками.

В качестве датчиков электрического сигнала используют два неподвижных предельных контакта. Один из них выдает сигнал минимального, а другой — максимального значения температуры контролируемой среды. Связь показывающей стрелки и подвижных контактов осуществляется через спиральные волоски. Установка пределов сигнализации осуществляется с помощью указателей пределов сигнализации. Когда температура достигает значения, заданного с помощью сигнальных стрелок, соответствующая контактная пара замыкается и выдается электрический сигнал. Внешнюю электрическую цепь подключают к термометру с помощью клеммной колодки.

В термометрах с пневматически выходным сигналом изменение измеряемой температуры воспринимается манометрической пружиной, которая, несколько распрямляясь, приводит в движение стрелку через трибосекторный механизм. Одновременно это изменение с помощью рычажного механизма передается на свободный конец пружины механизма обратной связи, на котором укреплена заслонка.

Рис. 1. Схема манометрического термометра

Рис. 2. Схема термометра с сигнальным устройством

Рис. 3. Схема термометра с пневматическим выходным сигналом:
1 – термобаллон; 2 – капилляр; 3 – рычажный механизм; 4, 18 – манометры; 5 – сопло; 6 — заслонка; 7 – пружина обратной связи; 8 – циферблат; 9 – стрелка; 10 – пружина манометрическая; 11 – пружина; 12 – пневмореле; 13 – термобиметапл; 14 – трибо-секторный механизм; 15, 16 – тяги; 17, 19 – поводки

Рис. 4. Схема термометров с электрическим выходным сигналом:
1 – термобаллон; 2 – капилляр; 3 – стрелка; 4 – шкала; 5 – манометрическая пружина; 6 – тяга; 7 – трибка; 8 – сектор; 9 – рычаг; 10 – флажок; 11 – меха-ноэлектрический преобразователь; 12 – контроль 0-100 мВ; 13 – выход 0,5 мА; 14 – пружина корректора нуля; 15 – пружина

Изменение зазора между соплом и заслонкой вызывает изменение давления питания воздуха в линии сопла, которое с помощью усилительного пневмореле изменяет давление выходного сигнала прибора и в механизме обратной связи. Под действием изменения давления манометрическая пружина механизма обратной связи осуществляет соответствующий поворот, воздействие которого на заслонку обеспечивает пропорциональность выходного давления ходу заслонки.

Видео (кликните для воспроизведения).

Таким образом, величина зазора между соплом и заслонкой и, следовательно, выходное давление прибора, являются мерой измеряемой температуры. Питание пневмодатчика осуществляется воздухом, очищенным воздушным фильтром под давлением, сниженным редуктором до (140 ± 14) кПа. Входное давление питания контролируется манометром, а выходное давление — манометром.

В термометрах с электрическим выходным сигналом изменение измеряемой температуры воспринимается манометрической пружиной, которая, несколько выпрямляясь, приводит в движение показывающую стрелку через сектор и трибку и механоэлектрический преобразователь. На оси сектора закреплен рычаг, к которому крепят измерительную пружину. Второй конец пружины впаян в рычаг флажка преобразователя, Измерительная пружина, растягиваясь, передает усилие к свободному концу флажка преобразователя. Перемещение флажка изменяет параметры преобразователя, в результате чего на его выходе появляется сигнал постоянного тока.

Достоинством манометрических термометров являются: возможность дистанционного измерения температуры без использования дополнительной энергии, сравнительная простота конструкции, возможность автоматической записи показаний, взрывобезопасность, нечувствительность к внешним магнитным полям.

К недостаткам относятся: относительно невысокая точность измерения, трудность ремонта при разгерметизации измерительной системы, низкая механическая прочность капилляра, небольшое расстояние дистанционной передачи показаний, значительная инерционность.

Читайте так же:  Взыскание долгов юридического лица исковое

Источник: http://pereosnastka.ru/articles/naznachenie-ustroistvo-i-printsip-deistviya-termometrov

Психрометр. Виды и работа. Применение и особенности

Психрометр – это измерительный прибор, применяемый для определения температуры и влажности воздуха. Его используют для составления метеорологических прогнозов. Это неотъемлемое оборудование метеостанций. Название прибора происходит от греческих слов «холодный» и «мерить».

Психрометры используются не только для наблюдения за погодой, но и определения оптимальных условий производственных процессов. Имея информацию о величине относительной влажности воздуха можно проводить калибровку различного промышленного оборудования, менять концентрацию компонентов для химических процессов, которые в зависимости от сырости воздуха протекают по-разному. Такие приборы часто можно встретить на складах пищевых продуктов и электроники.

Как работает психрометр

Принцип действия устройства основывается на свойстве жидкости при испарении влиять на температуру прилегающих к ней поверхностей. В приборе имеется 2 термометра. Один находится во влажной среде, а второй остается сухим. Первый контактирует со смоченной поверхностью, в качестве которой выступает губка или ткань. Прикасаясь к ней, термометр охлаждается от испаряющейся жидкости. Как следствие он показывает меньшую температуру, чем сухой прибор. Разница на двух термометрах составляет несколько градусов. Она используется для физических вычислений относительной влажности.

Самые простые психрометры это просто два спиртовых или ртутных термометра. Один из них обмотан смоченной хлопчатобумажной тканью, а второй остается сухим. Чтобы ткань оставалась влажной, в конструкции предусматривается емкость с водой, в который опускается ее конец. Хлопчатобумажные нитки впитывают жидкость и поднимают влагу вверх, поэтому ткань всегда остается мокрой пока имеется вода в резервуаре.

Чем ниже относительная влажность окружающего воздуха, тем более интенсивно испаряется вода из ткани. Естественно, быстрое испарение сильно понижает температуру термометра. На сухом воздухе разница между данными с пары термометров будет самой большой. При относительной влажности 100% температуры останутся одинаковыми.

Сняв показания с двух термометров и зафиксировав разность температуры необходимо воспользоваться специальной таблицей. По вертикали в ней отмечены показания сухого термометра, а по горизонтали разность температур. Сопоставив линии можно получить показания относительной влажности.

Табличные данные являются следствием расчета по формуле e = E-A•P(t-tc). Показатель «е» отображает упругость водяного пара в воздухе. Это является величиной абсолютной влажности воздуха. «Е» – максимально возможная упругость пара при температуре смоченного термометра. Показатель «t» температура воздуха. «А» является высчитанным коэффициентом, который напрямую зависит от термометра и скорости движения воздуха, соприкасаемого с резервуаром и колбой термометра. Показатель «P» – это давление воздуха.

Каждый классический психрометр имеет на своей поверхности напечатанную таблицу, благодаря чему данные можно сравнить сразу же не отходя от прибора. Это исключает необходимости использования расчетов. Чтобы пользоваться прибором и получить показатель относительную влажность можно даже не уметь применять формулу.

Отличие от гигрометра

Психрометр и гигрометр это приборы одинакового назначения. Они оба созданы для определения влажности. При этом устройства отличаются между собой по принципу работы. Дело в том, что гигрометр разработан специально для измерения физико-химических свойств разных веществ. Психрометры работают намного проще. Естественно, чем элементарней конструкция, тем она надежней. Именно поэтому психрометры более точные. Хотя они лишены ряда дополнительных функций, но могут использоваться в качестве эталона. Именно по психрометру проводят поверку точности многозадачного гигрометра.

Виды психрометров

Описанная классическая конструкция простейшего психрометра является не единственной. На основании принципа измерения влажности по показанию сухого и влажного термометра были разработаны несколько психрометров:

Августа

Этот прибор также называют стационарный психрометр. Он является самой первой и простой конструкцией. Устройство представляет собой корпус, на котором неподвижно закреплено 2 термометра. От одного из них отходит батистовая ткань, опущенная в резервуар с водой. Это безотказное оборудование, дающее весьма точные результаты, но требующее периодического слежения за наличием воды в резервуаре.

Недостаток данного прибора состоит в том, что интенсивность испарения зависит от скорости передвижения воздуха. То есть, если ткань термометра будет обдуваться, то произойдет значительное охлаждение, превышающее естественное. Как следствие показания станут искажаться. В связи с этим устройство лучше размещать в местах, где на его точность не повлияют сквозняки.

Асмана

Данный прибор известен как аспирационный психрометр. Это немного более сложное устройство. Оба его термометра скрыты в корпусе, защищающем их от повреждения и теплового воздействия от окружающих поверхностей. Они принудительно обдуваются воздухом с помощью встроенного вентилятора, что гарантирует одинаковый фиксированный поток. Это исключает зависимость показаний от порывов ветра, и выравнивает условия. Работающий вентилятор двигает воздух со скоростью 2 м/сек.

Это самый точный вид психрометров. Как и в приборах Августа в их конструкции используются термометры со стеклянной колбой, поэтому устройство требует аккуратного обращения. Спрятанные термометры все равно могут разбиться, и тогда прибор придет в негодность.

Дистанционный

Это промышленные психрометры, которые позволяют измерять влажность воздуха обычно применяя термометры сопротивления. Такие устройства позволяют определять относительную влажность и передавать результаты измерений на большие расстояния. То есть, исключается необходимость подходить к прибору и непосредственно снимать показания температуры.

Дистанционные психрометры бывают:
  • Манометрические.
  • Электрические.

Первый прибор имеет в своей конструкции манометрический термометр. Более востребованными являются электрические психрометры. В них встроен термометр, сопротивления, термопары, термисторы и т.п. Несмотря на техническую сложность, в основе таких устройств лежит тот же принцип разности показаний температуры сухого и мокрого датчика.

Обслуживание бытового психрометра

В качестве бытовых психрометров обычно предлагается использовать классические стационарные приборы. В идеале проводить заправку их резервуара дистиллированной водой. При ее отсутствии можно использовать кипяченую воду. Кипячение позволяет уменьшить концентрацию в жидкости солей, забивающей капилляры тканевой ленты и ускоряющей ее пересыхание. Чтобы психрометр работал точно без возможной погрешности, лучше использовать всегда только дистиллированную воду. Тогда лента не напитает соль, поэтому всегда будет сохнуть правильно.

Источник: http://tehpribory.ru/glavnaia/pribory/psikhrometr.html

Термометры сопротивления — принцип действия, виды и конструкции, особенности использования

Один из наиболее популярных в промышленности типов термометров — термометр сопротивления, представляющий собой первичный преобразователь, для получения точного значения температуры от которого необходим дополнительный, нормирующий преобразователь или промышленный ПЛК — программируемый логический контроллер.

Термометр сопротивления представляет собой конструкцию, в которой проволока из платины или меди намотана на специальный диэлектрический каркас, размещенный внутри герметичного защитного корпуса, удобного по форме для монтажа.

Читайте так же:  Работы в устройствах таи

Работа термометра сопротивления основана на явлении изменения электрического сопротивления проводника в зависимости от его температуры (от температуры исследуемого термометром объекта). Зависимость сопротивления проволоки от температуры в общем виде выглядит так: Rt=R0(1+at), где R0 – сопротивление проволоки при 0°C, Rt – сопротивление проволоки при t°C, а — температурный коэффициент сопротивления термочувствительного элемента.

В процессе изменения температуры, тепловые колебания кристаллической решетки металла изменяют свою амплитуду, соответственно изменяется и электрическое сопротивление датчика. Чем выше температура — тем сильнее колеблется кристаллическая решетка — тем выше оказывается текущее сопротивление. В приведенной выше таблице представлены типичные характеристики двух популярных термометров сопротивления.

Жаропрочный корпус датчика призван защитить его от механических повреждений в процессе измерения температуры того или иного объекта.

На рисунке: 1 — чувствительный элемент из платиновой или медной проволоки, в форме спирали, расположенный на керамическом стержне; 2 — пористый керамический цилиндр; 3 — керамический порошок; 4 — защитная наружная трубка из нержавеющей стали; 5 — токопередающие выводы; 6 — наружная защитная трубка из нержавеющей стали; 7 — головка термометра со съемной крышкой; 8 — клеммы для присоединения выводного провода; 9 — провод к фиксирующему прибору; 10 — втулка с резьбой для установки в трубопровод, имеющий патрубки с внутренней резьбой.

Если потребитель точно определился, для каких целей необходим термодатчик, и выбрал именно термометр сопротивления (термопреобразователь сопротивления), значит важнейшими критериями для решения предстоящей задачи явились: высокая точность (порядка 0,1°С), стабильность параметров, почти линейная зависимость сопротивления от температуры объекта, взаимозаменяемость термометров.

Виды и конструкции

Итак, в зависимости от того, из какого материала выполнен чувствительный элемент термометра сопротивления, эти приборы можно строго разделить на две группы: медные термопреобразователи и платиновые термопреобразователи. Датчики, всюду применяемые на территории России и ближайших ее соседей, маркируются следующим образом. Медные — 50М и 100М, платиновые — 50П, 100П, Pt100, Pt500, Pt1000.

Наиболее чувствительные термометры Pt1000 и Pt100 изготавливают путем напыления тончайшего слоя платины на керамическую основу-подложку. Технологически достигается напыление малого количества платины (около 1 мг) на чувствительный элемент, дающее элементу небольшой размер.

Свойства платины при этом сохраняются: линейная зависимость сопротивления от температуры, устойчивость к высоким температурам, термостабильность. По этой причине наиболее популярные платиновые преобразователи сопротивления — это именно Pt100 и Pt1000. Медные элементы 50М и 100М изготавливаются путем ручной намотки тонкой медной проволоки, а платиновые 50П и 100П — путем намотки проволоки платиновой.

Прежде чем монтировать термометр, необходимо убедиться, что его тип выбран правильно, что градуировочная характеристика соответствует поставленной задаче, что монтажная длина рабочего элемента подходит, и остальные особенности конструкции позволяют произвести установку на данное место, для данных внешних условий.

Датчик проверяют на отсутствие внешних повреждений, осматривают его корпус, проверяют целостность обмотки датчика, а также сопротивление изоляции.

Некоторые факторы могут негативно отразиться на точности измерений. Если датчик установлен в не то место, монтажная длина не соответствует рабочим условиям, плохое уплотнение, нарушение теплоизоляции трубопровода или иного оборудования — все это вызовет погрешность при измерении температуры.

Следует проверить все контакты, ведь если электрический контакт в соединениях прибора и датчика плохой, то это чревато погрешностью. Не попадает ли влага или конденсат на обмотку термометра, нет ли замыкания витков, правильно ли выполнена схема соединения (отсутствие компенсационного провода, отсутствие подгонки сопротивления линии), соответствует ли градуировка измерительного прибора градуировке датчика? Это важные моменты, на которые всегда стоит обращать пристальное внимание.

Вот типичные ошибки, которые могут возникнуть при монтаже термодатчика:

Если на трубопроводе отсутствует теплоизоляция, то это неизбежно приведет к потерям тепла, поэтому место для измерения температуры должно быть выбрано так, чтобы все внешние факторы были учтены заранее.

Малая или излишняя длина датчика может способствовать ошибке из-за неправильной установки датчика в рабочий поток исследуемой среды (датчик установлен не навстречу потоку и не по оси потока, как это должно быть по правилам).

Градуировка датчика не соответствует регламентированной схеме для монтажа на данном объекте.

Нарушение условия компенсации паразитного влияния изменяющейся температуры окружающей среды (не установлены компенсационные пробки и компенсационный провод, датчик подключен к прибору регистрации температуры по двухпроводной схеме).

Не учтен характер среды: повышенная вибрация, химически агрессивная среда, среда повышенной влажности или повышенного давления. Датчик должен соответствовать условиям среды, выдерживать их.

Источник: http://electricalschool.info/spravochnik/apparaty/1888-termometry-soprotivlenija-princip.html

Термометр. Виды и устройство. Работа и применение. Особенности

Термометр – это прибор, предназначенный для измерения температуры жидкостной, газообразной или твердой среды. Изобретателем первого устройства для измерения температуры является Галилео Галилей. Название прибора с греческого языка переводится как «измерять тепло». Первый прототип Галилея существенно отличался от современных. В более привычном виде устройство появилась спустя более чем через 200 лет, когда за изучение данного вопроса взялся шведский физик Цельсий. Он разработал систему измерения температуры, разделив термометр на шкалу от 0 до 100. В честь физика уровень температуры измеряются в градусах Цельсия.

Разновидности по принципу действия

Хотя с момента изобретения первых термометров прошло уже более через 400 лет, эти устройства до сих пор продолжают совершенствоваться. В связи с этим появляются все новые устройства, основанные на ранее не применяемых принципах действия.

Сейчас актуальными являются 7 разновидностей термометров:
  • Жидкостные.
  • Газовые.
  • Механические.
  • Электрические.
  • Термоэлектрические.
  • Волоконно-оптические.
  • Инфракрасные.
Жидкостные

Термометры относятся к самым первым приборам. Они работают на принципе расширения жидкостей при изменении температуры. Когда жидкость нагревается – она расширяется, а когда охлаждается, то сжимается. Само устройство состоит из очень тонкой стеклянной колбы, заполненной жидким веществом. Колба прикладывается к вертикальной шкале, выполненной в виде линейки. Температура измеряемой среды равна делению на шкале, на которое указывает уровень жидкости в колбе. Эти устройства являются очень точными. Их погрешность редко составляет более 0,1 градуса. В различном исполнении жидкостные приборы способны измерять температуру до +600 градусов. Их недостаток в том, что при падении колба может разбиться.

Газовые

Работают точно так же как и жидкостные, только их колбы заполняются инертным газом. Благодаря тому, что в качестве наполнителя используется газ, увеличивается диапазон измерения. Такой термометр может показывать максимальную температуру в пределах от +271 до +1000 градусов. Данные приборы обычно применяются для снятия показания температуры различных горячих веществ.

Читайте так же:  Срок выплаты алиментов по исполнительному листу
Механический

Термометр работает по принципу деформации металлической спирали. Такие приборы оснащаются стрелкой. Они внешне немного напоминает стрелочные часы. Подобные устройства используется на панели приборов автомобилей и различной спецтехнике. Главное достоинство механических термометров в их прочности. Они не боятся встряски или ударов, как модели из стекла.

Электрические

Приборы работают по физическому принципу изменения уровня сопротивления проводника при различных температурах. Чем горячее металл, тем его сопротивляемость при передаче электрического тока выше. Диапазон чувствительности электротермометров зависит от металла, который использован в качестве проводника. Для меди он составляет от -50 до +180 градусов. Более дорогие модели на платине могут указывать на температуру от -200 до +750 градусов. Такие приборы применяются как датчики температуры на производстве и в лабораториях.

Термоэлектрический

Термометр имеет в своей конструкции 2 проводника, которые измеряют температуру по физическому принципу, так называемому эффекту Зеебека. Подобные приборы имеют широкий диапазон измерения от -100 до +2500 градусов. Точность термоэлектрических устройств составляет около 0,01 градуса. Их можно встретить в промышленном производстве, когда требуется измерение высоких температур свыше 1000 градусов.

Волоконно-оптические

Делаются из оптоволокна. Это очень чувствительные датчики, которые могут измерять температуру до +400 градусов. При этом их погрешность не превышает 0,1 градуса. В основе такого термометра лежит натянутое оптоволокно, которое при изменении температуры растягивается или сжимается. Проходящий сквозь него луч света преломляется, что фиксирует оптический датчик, сопоставляющий преломление с температурой окружающей среды.

Инфракрасный

Термометр, или пирометр, является одним из самых недавних изобретений. Они имеют верхний диапазон измерения от +100 до +3000 градусов. В отличие от предыдущих разновидности термометров, они снимают показания без непосредственного контакта с измеряемым веществом. Прибор посылает инфракрасный луч на измеряемую поверхность, и на небольшом экране отображает ее температуру. При этом точность может отличаться на несколько градусов. Подобные устройства применяются для измерения уровня нагрева металлических заготовок, которые находятся в горне, корпуса двигателя и пр. Инфракрасные термометры способны показать температуры открытого пламени. Подобные устройства применяются еще в десятках различных сфер.

Разновидности по предназначению
Термометры можно классифицировать на несколько групп:
  • Медицинские.
  • Бытовые для воздуха.
  • Кухонные.
  • Промышленные.
Медицинский термометр

Медицинские термометры обычно называют градусники. Они имеют низкий диапазон измерения. Это связано с тем, что температура тела живого человека не может составлять ниже +29,5 и выше +42 градусов.

В зависимости от исполнения медицинские градусники бывают:
  • Стеклянные.
  • Цифровые.
  • Соска.
  • Кнопка.
  • Инфракрасный ушной.
  • Инфракрасный лобный.

Стеклянные термометры являются первыми, которые начали применять для медицинских целей. Данные устройства универсальны. Обычно их колбы заполняются спиртом. Раньше для таких целей использовалась ртуть. Подобные устройства имеют один большой недостаток, а именно необходимости длительного ожидания для отображения реальной температуры тела. При подмышечном исполнении продолжительность ожидания составляет не менее 5 минут.

Цифровые термометры имеют небольшой экран, на который выводится температура тела. Они способны показать точные данные спустя 30-60 секунд с момента начала измерения. Когда градусник получает конечную температуру, он создает звуковой сигнал, после которого его можно снимать. Данные приборы могут работать с погрешностью, если не очень плотно прилегают к телу. Существуют дешевые модели электронных термометров, которые снимают показания не менее долго, чем стеклянные. При этом они не создают звуковой сигнал об окончании измерения.

Термометры соски сделаны специально для маленьких детей. Устройство представляет собой соску-пустышку, которая вставляется в рот младенца. Обычно такие модели после завершения измерения подают музыкальный сигнал. Точность устройств составляет 0,1 градуса. В том случае если малыш начинает дышать через рот или плакать, отклонение от реальной температуры может быть существенным. Продолжительность измерения составляет 3-5 минут.

Термометры кнопки применяются тоже для детей возрастом до трех лет. По форме такие приборы напоминают канцелярскую кнопку, которая размещается ректально. Данные устройства снимают показания быстро, но имеют низкую точность.

Инфракрасный ушной термометр считывает температуру из барабанной перепонки. Такое устройство способно снять измерения всего за 2-4 секунды. Оно также оснащается цифровым дисплеем и работает на батарейках. Данное устройство имеет подсветку для облегчения введения в ушной проход. Приборы подходят для измерения температуры у детей старше 3 лет и взрослых, поскольку у младенцев слишком тонкий ушной канал, в который наконечник термометра не проходит.

Инфракрасные лобные термометры просто прикладываются ко лбу. Они работают по такому же принципу, как и ушные. Одно из преимуществ таких устройств в том, что они могут действовать и бесконтактно на расстоянии 2,5 см от кожи. Таким образом, с их помощью можно измерить температуру тела ребенка не разбудив его. Скорость работы лобных термометров составляет несколько секунд.

Бытовые для воздуха

Для измерения температуры воздуха на улице или в помещении применяются бытовые термометры. Они, как правило, выполнены в стеклянном варианте и заполнены спиртом или ртутью. Обычно диапазон их измерения в уличном исполнении составляет от -50 до +50 градусов, а в комнатном от 0 до +50 градусов. Подобные приборы часто можно встретить в виде украшений для интерьера или магнита на холодильник.

Кухонные

Кухонные термометры предназначены для измерения температуры различных блюд и ингредиентов. Они могут быть механическими, электрическими или жидкостными. Их применяют в тех случаях, когда необходимо строго контролировать температуру по рецепту, к примеру, при приготовлении карамели. Обычно подобные устройства идут в комплекте с герметичным тубусом для хранения.

Промышленные

Промышленные термометры предназначены для измерения температуры в различных системах. Обычно они представляют собой приборы механического типа со стрелкой. Их можно увидеть в магистралях водяного и газового снабжения. Промышленные модели бывают электрические, инфракрасные, механические и пр. Они имеют самое большое разнообразие форм, размеров и диапазонов измерения.

Видео (кликните для воспроизведения).

Источник: http://tehpribory.ru/glavnaia/pribory/termometr.html

Термометры устройство принцип работы
Оценка 5 проголосовавших: 1

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here